STUDENT'S NAME:

TEACHER'S NAME: _____

HURLSTONE AGRICULTURAL HIGH SCHOOL

2021

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions	 Preparation time – 10 minutes Working time - 2 hours
	• Working time – 3 hours
	 Scanning & uploading time – 1 hour
	Write using black pen
	• NESA approved calculators may be used
	• A reference sheet is provided at the back of this paper
	• In Questions in Section II, show all relevant mathematical reasoning and/or calculations
Total marks:	Section I – 10 marks (pages 2 – 4)
100	• Attempt Questions 1 – 10
	• Allow about 15 minutes for this section
	Section II – 90 marks (pages 5 – 10)
	• Attempt Questions 11 – 16
	• Allow about 2 hours and 45 minutes for this section

Section I

10 marks Attempt Questions 1 – 10. Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

1. Let z = a + ib, where a and b are real, non-zero numbers. If $z + \frac{1}{z} \in \mathbb{R}$ which of the following must be true? A. $\arg z = \frac{\pi}{4}$ B. a = -bC. a = bD. |z| = 1

2. The locus of z is displayed on the Argand diagram below.

Which of the following is the equation of the locus of z?

A.
$$\arg\left(\frac{z-i}{z-1}\right) = 0$$

B. $\arg\left(\frac{z-i}{z-1}\right) = -\pi$
C. $\arg\left(\frac{z+i}{z+1}\right) = 0$
D. $\arg\left(\frac{z-i}{z-1}\right) = \pi$

3.

A.
$$\frac{\pi}{12}$$
 B. $\frac{\pi}{6}$

C.
$$\frac{\pi}{3}$$
 D. $\frac{5\pi}{6}$

4. What is the approximate size of the angle between the vectors $\begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$?

- A. 57° B. 93°
- C. 123° D. 158°
- 5. Given the vectors $\underline{p} = 3\underline{i} 4\underline{j} + 12\underline{k}$ and $\underline{q} = 2\underline{i} + 2\underline{j} \underline{k}$, which of the following shows the projection of \underline{p} on \underline{q} ?

A.
$$-\frac{14}{3} \left(2\underline{i} + 2\underline{j} - \underline{k} \right)$$

B. $-\frac{14}{9} \left(2\underline{i} + 2\underline{j} - \underline{k} \right)$
B. $-\frac{14}{13} \left(3\underline{i} - 4\underline{j} + 12\underline{k} \right)$
D. $-\frac{14}{169} \left(3\underline{i} - 4\underline{j} + 12\underline{k} \right)$

- 6. Consider the statement "I will clean my room and do my homework"If the above statement is FALSE, which of the following statements must be true?
 - A. I will not clean my room and not do my homework.
 - B. I will clean my room and not do my homework.
 - C. I will not clean my room and will do my homework.
 - D. I will not clean my room or I will not do my homework.
- 7. A student wants to prove that there is an infinite number of prime numbers. To prove this statement by contradiction, what assumption would the student start their proof with?
 - A. There is only one prime number that is even.
 - B. There is an infinite number of primes.
 - C. There is a finite number of primes.
 - D. All prime numbers are less than 100

8. Assume that *a* and *b* are positive real numbers with a > b.

Which of the following might be false?

A.
$$\frac{1}{a-b} > 0$$

B. $\frac{a}{b} - \frac{b}{a} > 0$
C. $a+b > 2b$
D. $2a > 3b$

9.

If f(x) is a non-zero odd function with period π , which of the following statements is false?

A.
$$\int_{0}^{2\pi} f(x) dx = 0$$

B.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx = 2 \int_{0}^{\frac{\pi}{2}} f(x) dx$$

C.
$$\int_{0}^{\pi} f(x) dx = -\int_{0}^{\pi} f(-x) dx$$

D.
$$\int_{a}^{a+\pi} f(x) dx = \int_{0}^{\pi} f(x) dx \text{ for any real number } a.$$

10. Which of the following expressions is equal to $\int \frac{dx}{x(\log_e x)^2}$?

A.
$$\frac{1}{\log_e x} + c$$

B. $\frac{1}{(\log_e x)^3} + c$
C. $\log_e \left(\frac{1}{x}\right) + c$
D. $-\frac{1}{\log_e x} + c$

End of Section 1

Section II

90 marks

Attempt Questions 11 – 16.

Allow about 2 hours and 45 minutes for this section.

Answer each question in a separate writing booklet. Extra writing booklets are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Marks

Question 11 (15 marks) Use a separate writing booklet.

Question 12 (15 marks) Use a separate writing booklet.

- *P* is the point (4, -6, 3). Calculate the distance of *P* from: (a)
 - the origin (i)
 - (ii) the *x*-axis

2 vectors are of the form: $\vec{a} = \begin{bmatrix} \lambda \\ 1 \\ 2 \end{bmatrix}$ $\vec{b} = \begin{bmatrix} \lambda - 1 \\ 2 \\ -4 \end{bmatrix}$ (b)

Find all possible vectors a and b that are perpendicular to each other.

The equations of two lines are: (c)

$$\underline{r}_{1} = \begin{pmatrix} 2\\ -3\\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ 4\\ 1 \end{pmatrix} \quad \text{and} \quad \underline{r}_{2} = \begin{pmatrix} -4\\ 6\\ 2 \end{pmatrix} + \mu \begin{pmatrix} 4\\ -11\\ 3 \end{pmatrix}$$

- (i) Explain why these lines are not parallel.
 - Determine whether these lines intersect or not. (ii)
- The co-ordinates of 3 points are A = (1,0,5) B = (-1,2,4) C = (3,5,2). (d)

(i) Express the vector
$$AB$$
 in the form $x\underline{i} + y\underline{j} + z\underline{k}$ 1
(ii) Find the co-ordinates of the point D such that $ABCD$ is a parallelogram. 2

- Find the co-ordinates of the point *D* such that *ABCD* is a parallelogram. (ii)
- Prove that *ABCD* is a rectangle. (iii)
- Describe the behaviour of the following curve as t increases, given that $t \ge 0$ (e)

$$\underline{r}(t) = \cos(t)\underline{i} + \sin(t)\underline{j} + (t)\underline{k}$$

1

1

2

1

3

2

2

Question 13 (15 marks) Use a separate writing booklet.

(a)	Consi	der the statement: $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ such that $x^2 + y^2 = 2$.	
	Is the	statement true or false?	
	Justify	your answer.	1
(b)	Given	that m and n are integers, consider the following statement:	
	"If mn	is odd, then m and n are odd".	
	(i)	Write down the contrapositive of this statement.	1
	(ii)	Prove the initial statement is true by proving its contrapositive.	2
(c)	Prove	that $\log_2 5$ is an irrational number.	3
(d)	(i)	By considering the cases where a positive integer k is even $(k = 2x)$ and odd	
		$(k = 2x + 1)$, show that $k^2 + k$ is always even.	2
	(ii)	Using the result in part (i), prove, by mathematical induction, that for all positive integral values of n , $n^3 + 5n$ is divisible by 6.	3

Marks

(e) Given
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz)$$
,

Show that
$$\frac{x+y+z}{3} \ge \sqrt[3]{xyz}$$
 for $x > 0$, $y > 0$ and $z > 0$. 3

Question 14 (15 marks) Use a separate writing booklet.

(a) (i) Find real numbers a, b and c, such that

$$\frac{5}{x^2(2-x)} \equiv \frac{ax+b}{x^2} + \frac{c}{2-x} \,.$$

(ii) Hence, or otherwise, find
$$\int \frac{20}{x^2(2-x)} dx$$
 2

(b) Find
$$\int \frac{dx}{\sqrt{8-2x-x^2}} dx$$
 3

(c) By using a suitable substitution, evaluate $\int_{3\sqrt{2}}^{6} \frac{1}{x^2 \sqrt{x^2 - 9}} dx$

(d) Find
$$\int \cos^5 x \, dx$$
 3

(e) Find
$$\int \frac{dx}{1+\cos x}$$
 2

Marks

3

Question 15 (15 marks) Use a separate writing booklet.

(a) The straight line *L* has the vector equation $r = 2i + j - k + \lambda (-i + 3j + k)$. The point *O* is at the origin.

(i)	The point $P(0, y, z)$ lies on L. Find the values of y and z.	2
(ii)	The point Q lies on L such that OQ is perpendicular to L .	
	Find the coordinates of Q.	2

- (iii) Find the area of $\triangle OPQ$.
- (b) In the Argand diagram below, point *P* lies in the first quadrant on the unit circle.

P represents the complex number ω and $z = \omega$ is a root of $z^5 - 1 = 0$.

 $\angle POx = \theta$.

(i)	Show that $\theta = 72^{\circ}$.]	l

(ii) Show that $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$. **2**

- (iv) Show that $(a-b)^2 = 5$. 1
- (v) Given (a-b) > 0, find the exact value of $\cos 72^\circ$. 3

2

2

Question 16 (15 marks) Use a separate writing booklet.

(a) (i) Use integration by parts to evaluate
$$\int_{1}^{n} \ln x \, dx$$
. 2

(ii) Consider the curve $y = \ln x$.

Rectangles of width 1 unit are drawn below the curve to approximate the area under the curve for $1 \le x \le n$ as shown below.

Show that the sum of the areas of the rectangles is $\ln((n-1)!)$ units². 2

(iii) Hence, or otherwise prove that
$$\ln((n-1)!) < n \ln n - n + 1 < \ln(n!)$$
. 2

(iv) Prove that
$$(n-1)! < n^n e^{1-n} < n!$$
 1

(b) Let
$$I_n = \int_0^1 x^n \sqrt{1-x} \, dx$$
, $n = 0, 1, 2, ...$

(i) Prove that
$$I_n = \frac{2n}{2n+3}I_{n-1}, n \ge 1$$
 3

(ii) Evaluate
$$\int_{0}^{1} x^3 \sqrt{1-x} \, dx$$
. 2

(iii) Prove that
$$I_n = \frac{n! (n+1)! 4^{n+1}}{(2n+3)!}$$
 3

End of Examination.

Marks

Year 12 Higher	School CertificateMathematics Extension 2Task 4 2021		
Questions 1 - 10 Solutions and Marking Guidelines			
	Outcomes Addressed in this Question		
MEX12-2 choc	oses appropriate strategies to construct arguments and proofs in both practical and		
abst	ract settings		
MEX12-3 uses	vectors to model and solve problems in two and three dimensions		
MEX12-4 uses	the relationship between algebraic and geometric representations of complex		
num	bers and complex number techniques to prove results, model and solve problems		
MEXI2-5 appl	tes techniques of integration to structured and unstructured problems		
MEV12 4	Solutions I mark each		
MILA12-4	1. <i>D</i>		
	$z = rcis\theta$ $\frac{1}{r} = z^{-1} = r^{-1}cis(-\theta)$ Since their arguments are opposites adding		
	z = 7 cis(-b) since then arguments are opposites, adding z		
	the numbers' vectors together will create symmetry above and below the		
	horizontal. The only way this can result in an imaginary part equal to zero is if		
	the two moduli are equal.		
	$\operatorname{mod}(z) = \operatorname{mod}\left(\frac{1}{z}\right) \longrightarrow \operatorname{mod}(z) = 1$		
MEX12-4	2. B		
	The line is between the end-points, so eliminate A, C. Now decide whether		
	arg(numerator) minus arg(denominator) is positive or negative.		
	$\operatorname{Arg}(z-i)$ measures the direction from (0,1). $\operatorname{Arg}(z-1)$ measures the direction from		
	(1,0).		
MEX12-4	3. B		
	If $e^{i\theta} \times e^{2i\theta} = i$, then $e^{3i\theta} = i$		
	$\therefore \cos 3\theta + i \sin 3\theta = i$		
	Matching real & imaginary parts, $\therefore \cos 3\theta = 0$, $\sin 3\theta = 1$		
	Solving $3\theta = \frac{\pi}{2}$ for smallest positive value of θ , $\theta = \frac{\pi}{2}$		
	2 0		
MEX12-3	4. C		
	ash 5		
	$\cos\theta = \frac{\mu \cdot \nu}{ q b } = \frac{-3}{84} \longrightarrow \theta = 123^{\circ}$		
_			
MEX12-3	5. B		
	$p \operatorname{ron}^{\circ} q$ rules out A.		
	$p \bullet q = -14$		
	$\frac{1}{\left q\right ^2} = \frac{1}{9}$		
	$ \tilde{\chi} $		
MFX12_2	6 D		
1011.2312-2			
MEX12-2	7. C		
	Contradicting an infinite number of primes is that there is a finite number of		
	primes		

8. D **MEX12-2** a and b are positive and a > bIf a = 3, b = 2 False! So D. OR Not C as adding b to both sides of a > b gives a + b > 2b so always true $\frac{a}{b} - \frac{b}{a} = \frac{a^2 - b^2}{ab} = \frac{(a-b)(a+b)}{ab}$ which is positive so not B $\frac{1}{a-b} = 1 \div \text{positive} = \text{positive}$, so not A 9. B **MEX12-5** As odd, must have point symmetry about the origin and as period π , consider $y = \sin 2x$. $\frac{1}{\pi \sqrt{2}} \frac{0}{0} \frac{1}{\pi \sqrt{2}} \frac{1}{\pi \sqrt$ $\int_{0}^{\pi} f(x) dx = 0$ Equal areas above & below x axis A is true $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx = 2 \int_{0}^{\frac{\pi}{2}} f(x) dx \qquad \text{LHS} = 0, \text{RHS} \neq 0 \quad \text{B is false}$ $-\int_{0}^{\pi} f(-x) dx = -\int_{0}^{\pi} -f(x) dx = \int_{0}^{\pi} f(x) dx \text{ as odd function. C true}$ $\int_{0}^{a+\pi} f(x) dx = \int_{0}^{\pi} f(x) dx$ Equal integrals for any section of length π units as areas above & below x axis. D true 10. D Let $u = \log_e x$ **MEX12-5** $\therefore \frac{du}{dx} = \frac{1}{x} \& \therefore du = \frac{dx}{x}$ $\therefore \int \frac{dx}{x(\log_a x)^2} = \int \frac{du}{u^2} = \int u^{-2} du$ $=\frac{u^{-1}}{-1}+c$ $=\frac{-1}{\log x}+c$

Higher School Certificate Ouestion No. 11 Mathematics Extension 2 Solutions and Marking Guidelin Task 4 2021 HSC

Question No. 11 Solutions and Marking Guidelines		
	Outcomes Addressed in this Question	
MEX12-4	uses the relationship between algebraic and geometric represe	entations of complex
numbers a	ind complex number techniques to prove results, model and solve p	problems
Outcome	Solutions	Marking Guidelines
(a)	(i)	(a) (i) 2 marks: Both
MEX12-4	$\begin{pmatrix} \sqrt{3} & i \end{pmatrix}$	modulus and
	$z + w = 1 + i + \left \frac{\sqrt{s}}{2} + \frac{1}{2} \right $	principal argument
	$\begin{pmatrix} 2 & 2 \end{pmatrix}$	correct.
	$\begin{pmatrix} \sqrt{3} \end{pmatrix}$ 3 <i>i</i>	1 mark: Correct
	$= \left 1 + \frac{\sqrt{3}}{2} \right + \frac{3}{2}$	conversion of one
		number's format.
	or equivalent.	
	(ii)	(ii) 1 mark: Correct
	$-\sqrt{2}a^{\frac{i\pi}{4}} - \sqrt{2}(a^{\pi}a^{\pi}a^{\pi}a^{\pi}a^{\pi}a^{\pi}a^{\pi}a^{\pi}$	answer.
	$z = \sqrt{2}e^{-1} - \sqrt{2}\left(\frac{\cos - \frac{1}{4}i\sin - \frac{1}{4}}{4}\right)$	
	(iii)	(iii) 2 marks: Correct
	$(i\pi -i\pi)^8$	solution (CFPA (ii)).
	$(w\overline{z})^8 = \left[e^{\frac{\pi}{6}} \sqrt{2} e^{\frac{\pi}{4}} \right]$	1 mark: Significant
		relevant progress
	$\left(-i\pi\right)^8$	shown.
	$=(\sqrt{2})^{8}\left[e^{\frac{\pi}{12}}\right]$	
	$\frac{-2i\pi}{2} = 16 \left \cos \frac{2\pi}{2} + i \sin \frac{2\pi}{2} \right $	
	$=16e^{-3}$ (3 3)	
(D) MEV12 4		
MIEA12-4	$(1)^4$ $(Z)^4$ 1	
	$z^{\prime} = (z-1) \rightarrow (\frac{z}{z-1}) = 1$	(b)
		4 marks: Complete
	$\therefore \frac{2}{1} = \pm 1, \pm i$	solution.
	Z = 1	solving method
	$\frac{z}{1} = 1 \rightarrow \text{No solution}$	2 marks: Significant
	z-1	progress towards
	z = 1 $> z = 1$	correct solution
	$\frac{1}{z-1} = \frac{1}{z-1} \qquad \Rightarrow \frac{1}{z} = \frac{1}{2}$	1 mark Some
	z -1 1+i 1-i	relevant progress
	$\overrightarrow{z-1} = i \qquad \rightarrow z = \overrightarrow{1-i} \times \overrightarrow{1+i} = \overrightarrow{2}$	rene vanie programme
	7 i $1-i$ $1+i$	
	$\frac{2}{1-1} = -i \qquad \rightarrow z = \frac{i}{1+i} \times \frac{1-i}{1-i} = \frac{1+i}{2}$	
	z-1 $1+l$ $1-l$ 2	
	Alternatively, you could use polynomial methods to get the	
	factorisation	
	$(2\pi - 1)(2\pi^2 - 2\pi + 1) = 0$	
	(2z-1)(2z-2z+1)=0	
	And solve using the quadratic formula, sum of roots or	
	equivalent.	
	Another alternative: Equate to zero, and factorise as a difference	
	of 2 squares. Very elegant method with quick solution.	

Higher Scl	nool Certificate Mathematics Extension 2	Task 4 2021 HSC	
Question No. 12 Solutions and Marking Guidelines			
MEX12-3	uses vectors to model and solve problems in two and three di	mensions	
Outcome	Solutions	Marking Guidelines	
(a) MEX12-3	Distance from: (i) origin $= \sqrt{4^2 + (-6)^2 + 3^2} = \sqrt{61}$ units (ii) <i>x</i> -axis $= \sqrt{(-6)^2 + 3^2} = \sqrt{45}$ units	 (a) (i) 1 mark: Correct answer. (ii) 1 mark: Correct answer. 	
(b) MEX12-3	Dot product = 0 $\lambda(\lambda - 1) + 1(2) + 2(-4) = 0$ $\lambda^2 - \lambda - 6 = 0$ $\lambda = -2, 3$ When $\lambda = -2$ $a = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}$ $b = \begin{pmatrix} -3 \\ 2 \\ -4 \end{pmatrix}$ When $\lambda = 3$ $a = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$ $b = \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix}$	(b) 2 marks: Both correct pairs. 1 mark: One correct pair from correct λ , or 2 correct pairs from incorrect λ	
(c) MEX12-3	(i) Direction vectors are not scalar multiples of each other. $ \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} \neq k \begin{pmatrix} 4 \\ -11 \\ 3 \end{pmatrix} $ (ii)	(c) (i) 1 mark: Correct statement explaining which are the direction vectors for this eg.	
	(ii) $r_1 = r_2$ $2 + \lambda = -4 + 4\mu$ $\langle 1 \rangle$ $-3 + 4\lambda = 6 - 11\mu$ $\langle 2 \rangle$ $1 + \lambda = 2 + 3\mu$ $\langle 3 \rangle$ Solving $\langle 1 \rangle$ and $\langle 3 \rangle$ simultaneously gives $\lambda = 22$; $\mu = 7$ Substitution into $\langle 2 \rangle$ gives <i>LHS</i> = 85 ; <i>RHS</i> = 71. Not satisfied. Therefore the lines do not intersect. Note: pairing the 3 equations differently will give different values for λ and μ	 (ii) 3 marks: Correct solution with justification. 2 marks: Significant progress towards correct solution. 1 mark: Relevant progress. 	

	(\mathbf{i})	
(d) MEX 12-3	$\overrightarrow{AB} = \begin{pmatrix} -2\\2\\-1 \end{pmatrix} = -2\underline{i} + 2\underline{j} - \underline{k}$	(d)(i) 1 mark: Correct answer in format required.
	(ii) $\overrightarrow{DC} = \overrightarrow{AB}$ $\therefore D = \begin{pmatrix} k \\ l \\ m \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix} - \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ 3 \end{pmatrix}$ (iii)	 (ii) 2 marks: Correct solution. 1 mark: Substantial progress.
	(iii) $\overrightarrow{AB} \cdot \overrightarrow{AD} = \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} = -8 + 6 + 2 = 0$ $\therefore AB \perp AD$ ABCD is a rectangle because two adjacent sides are perpendicular. Note: Alternatively, you could prove that diagonals are equal in length.	 (iii) 2 marks: Correct solution and geometrical property described. 1 mark: Substantial progress.
(e) MEX 12-3	The curve "begins" at $(1, 0, 0)$ when $t=0$ and rises in the form of a <u>circular spiral with radius 1</u> , above the circle $x^2 + y^2 = 1$ and about the <i>z</i> -axis. It rises by 2π units every revolution.	(e) 2 marks: Description including the underlined point and another feature. 1 mark: Partial description.

Year 12	Mathematics Extension 2	Ass Task 4 2021 HSC
Question No. 13 Solutions and Marking Guidelines		
	Outcomes Addressed in this Question	
MEX12-2	chooses appropriate strategies to construct arguments an abstract settings	nd proofs in both practical and
Part / Outcome	Solutions	Marking Guidelines
(a)	FALSE (counter-example below) $x^{2} + y^{2} = 2$ if $x = 2$ $4 + y^{2} = 2$ $y^{2} = -2$ \therefore No real solution	<u>1 mark</u> : correct solution (Provides correct counter example)
(b)(i)	"If <i>mn</i> is odd, then <i>m</i> and <i>n</i> are odd" Contrapositive: "If <i>m</i> or <i>n</i> are even, then <i>mn</i> is even"	<u>1 mark</u> : correct solution
(b)(ii)	If <i>m</i> is even and <i>n</i> is even, m = 2p, n = 2q p,q are integers $mn = 2p \times 2q$ $= 2(2pq)$ \therefore mn is even If <i>m</i> is even and <i>n</i> is odd, m = 2p, n = 2q+1 p,q are integers $mn = 2p \times (2q+1)$ = 2(p(2q+1)) $= 2k$ \therefore mn is even	<u>2 marks</u> : correct solution <u>1 mark</u> : substantially correct solution NB: 3cases to consider m even, n odd; m odd, n even; both even. This boils down to two cases to consider: Either one even or both even
(c)	Suppose (by way of contradiction) that $\log_2 5$ is rational $\log_2 5 = \frac{p}{q}$ where $\begin{cases} p,q \text{ are integers with no common fact and q \ge 1 \end{cases}ie 2^{\frac{p}{q}} = 52^p = 5^q (raising both side to the q^{\text{th}} power)Now, LHS is even and RHS is oddThis is a contradiction\therefore \log_2 5 is not rationalie \log_2 5 is an irrational number$	tors 3 marks : correct proof 2 marks: substantially correct solution (eg determines $2^p = 5^q$) 1 mark: attempts proof by contradiction

	Question 13 continued	
(d)(i)	If k is even, ie $k = 2x$ then $k^2 + k = (2x)^2 + 2x$	<u>2 marks</u> : correct solution
	$=4x^2+2x$	(snowing boin results)
	$=2(2x^2+x)$	1 mark: substantially
	=2m : even	<u>correct</u> solution (showing one result, or equivalent merit)
	If k is odd, ie $k = 2x + 1$	
	then $k^2 + k = (2x+1)^2 + 2x + 1$	
	$= 4x^2 + 4x + 1 + 2x + 1$	
	$=4x^2+6x+2$	
	$=2(2x^2+3x+1)$	
	$=2n$ \therefore even	
(d)(ii)	" $n^3 + 5n$ is divisible by 6"	
	Show true for $n = 1$ $1^3 + 5(1) = 6$ which is divisible by 6	3 marks: correct
	1 + 3(1) = 0, which is divisible by 0	solution
	Assume true for $n = k$	2 marks: substantially
	ie $k^3 + 5k = 6M$, for integral M	correct solution
	Prove true for $n = k + 1$	<u>1 mark</u> : partially
	ie $(k+1)^3 + 5(k+1) = 6N$, for integral N	correct solution
	now, LHS = $(k+1)^3 + 5(k+1)$	
	$= k^3 + 3k^2 + 3k + 1 + 5k + 5$	
	$= k^3 + 5k + 3k^2 + 3k + 6$	
	$= 6M + 3(k^2 + k) + 6$ from assumption	
	$= 6M + 3(2p)^* + 6$ *from (i)	
	= 6(M+p+1)	
	=6N	
	ie divisible by 6	
	:. true by mathematical induction	

Question 13 continued...

(e)

 $(x-y)^2 \ge 0 \implies x^2 + y^2 - 2xy \ge 0$ Using $x^2 + y^2 \ge 2xy$...(1) $x^2 + z^2 \ge 2xz$...(2) $y^2 + z^2 \ge 2yz \quad \dots (3)$ Adding (1), (2), (3) gives $2\left(x^2 + y^2 + z^2\right) \ge 2\left(xy + yz + xz\right)$ $x^2 + v^2 + z^2 \ge xv + vz + xz$ and given that x, y, z > 0, then xy + yz + xz > 0and so $x^{2} + y^{2} + z^{2} - xy - yz - xz \ge 0$ also x + y + z > 0Now, $x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - xz) \ge 0$ $x^{3} + y^{3} + z^{3} - 3xyz \ge 0$ let $a = x^3$, $b = y^3$, $c = z^3$ $a+b+c-3\sqrt[3]{a}\times\sqrt[3]{b}\times\sqrt[3]{c}\geq 0$ $a+b+c > 3\sqrt[3]{abc}$ $\frac{a+b+c}{3} \ge \sqrt[3]{abc}$

NOTE: a common line of working in candidates solutions was the following:

$$x^{2} + y^{2} + z^{2} - xy - yz - xz \ge 0$$
$$(x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - xz) \ge 0$$

 $\frac{x+y+z}{2} \ge \sqrt[3]{xyz}$

this can only be true if $x + y + z \ge 0$, and this condition, and the reason it is true needs to be stated for the rest of the proof to hold as true.

Alternate solution:

Using
$$\left(\sqrt{x} - \sqrt{y}\right)^2 \ge 0 \implies x + y - 2\sqrt{xy} \ge 0$$

 $x + y \ge 2\sqrt{xy} \dots(1)$
 $w + z \ge 2\sqrt{wz} \dots(2)$

<u>3 marks:</u> Correct solution.

<u>2 marks:</u> Makes significant progress towards the solution.

1 Mark: Makes some progress towards the solution such as using

 $x^2 + y^2 \ge 2xy$

adding (1) and (2)...

$$x + y + w + z \ge 2(\sqrt{xy} + \sqrt{wz})$$

$$\ge 2(2\sqrt{xy} \times \sqrt{wz})$$
so $x + y + w + z \ge 4 \times \sqrt[3]{xywz}$
let $x + y + z = 3w \implies w = \frac{x + y + z}{3}$
so now, $4w \ge 4 \times \sqrt[3]{wxyz}$
 $w \ge \sqrt[3]{wxyz}$
 $w^4 \ge wxyz$
 $w^2 < xyz$
 $w \ge \sqrt[3]{xyz}$
 $\frac{x + y + z}{3} \ge \sqrt[3]{xyz}$

Year 12 Higher School Certificate Mathematics Extension 2	Task 4 2021
Question No. 14 Solutions and Marking Guidelines	
Outcomes Addressed in this Question	
MEX12-5 applies techniques of integration to structured and unstructured	problems
Solutions	Marking Guidelines
(a) (i) $\frac{5}{x^2(2-x)} \equiv \frac{dx+b}{x^2} + \frac{c}{2-x}$	2 marks : correct solution
5 = (ax + b)(2 - x) + cx $5 = (c - a)x^{2} + (2a - b)x + 2b$	1 mark : significant
$\therefore 2b = 5, 2a - b = 0, c - a = 0$ by matching like coefficients	progress towards correct solution
$\therefore b = \frac{5}{2}, a = \frac{5}{4}, c = \frac{5}{4}.$	
(ii) $\int \frac{20}{x^2(2-x)} dx = \int 4 \times \frac{5}{x^2(2-x)} dx$ $(\frac{5}{x} + \frac{5}{x} - \frac{5}{2})$	2 marks : correct solution
$= 4 \int \frac{4}{x^2} \frac{2}{x^2} + \frac{4}{2-x} dx$ $= \int \frac{5x+10}{2} + \frac{5}{2} dx$	1 mark : significant progress towards correct solution
$\int x^{2} 2-x$ = $\int \frac{5}{x} + 10x^{-2} - 5 \cdot \frac{-1}{2-x} dx$	
$= 5\log x + \frac{10x^{-1}}{-1} - 5\log 2 - x + c$	
$= 5\log\left \frac{x}{2-x}\right - \frac{10}{x} + c (b)$	
$\int \frac{dx}{\sqrt{8-2x-x^2}} dx = \int \frac{dx}{\sqrt{-(x^2+2x-8)}} dx$	3 marks : correct solution
$= \int \frac{dx}{\sqrt{-\left(x^2 + 2x + 1 - 9\right)}} dx$	2 marks: substantial progress towards correct solution
$= \int \frac{dx}{\sqrt{-\left(\left(x+1\right)^2 - 9\right)}} dx$	1 mark : significant progress towards correct solution
$=\int \frac{dx}{\sqrt{9-(x+1)^2}}dx$	
$=\sin^{-1}\left(\frac{x+1}{3}\right)+c$	3 marks : correct solution
(c) For $\int_{3\sqrt{2}} \frac{1}{x^2 \sqrt{x^2 - 9}} dx$, let $x = 3 \sec \theta$ for $0 < \theta < \frac{\pi}{2}$.	2 marks: substantial
$\therefore \frac{dx}{d\theta} = 3\sec\theta\tan\theta$	progress towards correct solution

When
$$x = 6$$
, sec $\theta = 2$, $\theta = \frac{\pi}{3}$, when $x = 3\sqrt{2}$, sec $\theta = \sqrt{2}$, $\theta = \frac{\pi}{4}$.

$$\therefore \int_{3\sqrt{2}}^{4} \frac{1}{x^2\sqrt{x^2 - 9}} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{9 \sec^2 \theta \sqrt{9 \sec^2 \theta - 9}} \times 3 \sec \theta \tan \theta \, d\theta$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{9 \sec \theta \sqrt{\sec^2 \theta - 1}}$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan \theta \, d\theta}{9 \sec \theta \sqrt{\tan^2 \theta}}$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{9 \sec^2 \theta \sqrt{\tan^2 \theta}}}{18}$$
(d) $\int \cos^5 x \, dx = \int \cos^4 x \cos x \, dx$

$$= \int (1 - \sin^2 x)^2 \cos x \, dx$$

$$= \int (1 - 2 \sin^2 x + \sin^4 x) \cos x \, dx$$

$$= \int (\cos x - 2 \sin^2 x \cos x + \sin^4 x \cos x) \, dx$$

$$= \int (\cos x - 2 \sin^2 x \cos x + \sin^4 x \cos x) \, dx$$

$$= \sin x - \frac{2 \sin^2 x}{3} + \frac{\sin^5 x}{5} + c$$
(e) For $\int \frac{dx}{1 + \cos x}$, let $t = \tan \frac{x}{2}$

$$\therefore \frac{dt}{dx} = \frac{1}{2} \sec^2 \frac{x}{2}$$

$$= \frac{1}{2} \sec^2 \frac{x}{2}$$

$$\therefore 2\frac{dt}{dx} = \tan^2 \frac{x}{2} + 1$$
$$\therefore \frac{dx}{dt} = \frac{2}{t^2 + 1}$$
$$\therefore \int \frac{dx}{1 + \cos x} = \int \frac{\frac{2 dt}{t^2 + 1}}{1 + \frac{1 - t^2}{1 + t^2}}$$
$$= \int \frac{2 dt}{1 + t^2 + 1 - t^2}$$
$$= \int dt$$
$$= t + c$$
$$= \tan \frac{x}{2} + c$$

Year 12	Mathematics Extension 2	Ass Task 4 2021 HSC	
Question No. 15 Solutions and Marking Guidelines			
	Outcomes Addressed in this Question		
MEX12-3 MEX12-4	uses the relationship between algebraic and geometric representationship between algebraic and geometric rep	mensions entations of complex numbers and	
WIL/XIZ-4	complex number techniques to prove results, model and solv	e problems	
Part /	Solutions	Marking Guidelines	
Outcome			
(a)(i)	$P(0, y, z)$ satisfies $\underline{r} = 2\underline{i} + \underline{j} - \underline{k} + \lambda \left(-\underline{i} + 3\underline{j} + \underline{k}\right)$		
MEX12-3	x-coordinate $2 + (-\lambda) = 0$	<u>2 marks</u> : correct	
	$\lambda = 2$	solution	
	v-coordinate $v = 1 + \lambda(3)$		
	=1+2(3)=7	<u>1 mark</u> : substantially	
	z -coordinate $z = -1 \pm \lambda(1)$	correct solution	
	$2 = -1 + \chi(1)$	$(11103 \times 01 \text{ shows})$	
	= -1 + 2(1) = 1	some understanding)	
	$\therefore y = 7, z = 1$ ie $P(0,7,1)$		
(a)(ii)	\overrightarrow{OO} is perpendicular to $-i+3j+k$		
MEX12-3	$\sum_{i=1}^{\infty} \frac{1}{i} $		
_	$SO\left(-\underline{i}+3\underline{j}+\underline{k}\right) \cdot (x\underline{i}+y\underline{j}+2\underline{k}) = 0$	<u>2 marks</u> : correct	
	$-1 \times x + 3 \times y + 1 \times z = 0$	solution	
	-x + 3y + z = 0		
	$O(r, v, z)$ lies on $2i \pm i = k \pm \lambda (-i \pm 3i \pm k)$	<u>1 mark</u> : substantially	
	$\mathcal{Q}(x,y,z) = \max \left\{ \lim_{x \to \infty} 2i + j - \frac{1}{x} + \lambda \left(-i + 3j + \frac{1}{x} \right) \right\}$	correct solution	
	Equating the x, y and z coordinates:	(finds $-x + 3y + z = 0$ or shows some relevant	
	$-(2-\lambda)+3(1+3\lambda)+(-1+\lambda)=0$	understanding)	
	$-2 + \lambda + 3 + 9\lambda - 1 + \lambda = 0$		
	$\lambda = 0$		
	$\overline{\alpha}$		
	OQ = 2i + j - k + 0(-i + 3j + k)		
	=2i+j-k		
	$\therefore Q$ is $(2, 1, -1)$		
	$\angle OQP = 90^\circ \implies \text{need } \overrightarrow{OQ} \text{ and } \overrightarrow{QP}$		
(a)(iii)	$ \overrightarrow{OO} = \sqrt{2^2 + 1^2 + (-1)^2} = \sqrt{6}$		
MEX12-3		2 marks: correct	
	QP = OP - OQ	solution	
	= (0-2)i + (7-1)j + (1-1)k		
	$= -2\underline{i} + 6\underline{j} + 2\underline{k}$		
	$\left \overline{OP} \right = \sqrt{(-2)^2 + c^2 + 2^2} = \sqrt{44}$	<u>1 mark</u> : substantially	
	$ \mathcal{Q}^{r} = \sqrt{(-2)} + 6 + 2 = \sqrt{44}$		
	$1 \dots \overline{\Gamma}$		
	$A = \frac{1}{2} \times \sqrt{6} \times \sqrt{44}$		
	$=\sqrt{66}$ or 8.12 square units		

	Question 15 continued	
(b)(i) MEX12-4	$(1 \operatorname{cis} 72^\circ)^5 = \operatorname{cis} 360^\circ = 1$	<u>1 mark</u> : correctly show the result
(b)(ii) MEX12-4	$\omega \text{ is a root of} \qquad z^5 - 1 = 0$ ie $\omega^5 - 1 = 0$ $(\omega - 1)(1 + \omega + \omega^2 + \omega^3 + \omega^4) = 0$ so $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$	<u>2 marks</u> : correct solution <u>1 mark</u> : substantially
	or sum of roots, $1 + \omega + \omega^2 + \omega^3 + \omega^4 = -\frac{b}{a}$ = $-\frac{0}{1}$ = 0 or sum of GP, $1 + \omega + \omega^2 + \omega^3 + \omega^4 = \frac{1(\omega^5 - 1)}{\omega - 1}$	correct solution
	$=\frac{(1-1)}{\omega-1} \qquad (\omega^5 = 1)$ $= 0$	
(b)(iii) MEX12-4	$u + b = (\omega + \omega') + (\omega' + \omega')$ = 1 + \omega + \omega^2 + \omega^3 + \omega^4 - 1 = 0 - 1 = -1	<u>2 marks</u> : correct solution
	$ab = (\omega + \omega^{4})(\omega^{2} + \omega^{3})$ = $\omega^{3} + \omega^{4} + \omega^{6} + \omega^{7}$ = $\omega^{3} + \omega^{4} + \omega^{5} \times \omega + \omega^{5} \times \omega^{2}$ ($\omega^{5} = 1$) = $\omega^{3} + \omega^{4} + \omega + \omega^{2}$ = -1	<u>1 mark</u> : substantially correct solution
(b)(iv) MEX12-4	$(a-b)^{2} = a^{2} - 2ab + b^{2}$ = $a^{2} + 2ab + b^{2} - 4ab$ = $(a+b)^{2} - 4ab$ = $(-1)^{2} - 4(-1)$ = 5	<u>1 mark</u> : correctly show the result

$$\begin{array}{c} \textbf{(b)(v)}\\ \textbf{MEX12.4} \\ \begin{array}{c} a+b=-1 & \dots(1)\\ a-b=\sqrt{5} & \dots(2)\\ 2a=\sqrt{5}-1 & (1)+(2)\\ a=\frac{\sqrt{5}-1}{2}\\ ic & \omega+\omega^4=\frac{\sqrt{5}-1}{2}\\ (cos72^\circ+isin72^\circ)+(cos72^\circ+isin72^\circ)^4=\frac{\sqrt{5}-1}{2}\\ (cos72^\circ+isin72^\circ)+(cos72^\circ+isin72^\circ)=\frac{\sqrt{5}-1}{2}\\ (cos72^\circ+isin72^\circ)+(cos288^\circ+isin288^\circ)=\frac{\sqrt{5}-1}{2}\\ (cos72^\circ+isin72^\circ)+(cos72^\circ-isin72^\circ)=\frac{\sqrt{5}-1}{2}\\ (cos72^\circ+isin72^\circ)+(cos72^\circ-isin72^\circ)=\frac{\sqrt{5}-1}{2}\\ cos72^\circ=\frac{\sqrt{5}-1}{4}\\ \end{array}$$

Year 12 Hig	gher School Certificate Mathematics Extension 2	Task 4 2021		
Question No. 16 Solutions and Marking Guidelines				
	Outcomes Addressed in this Question			
MEX12-2 chooses appropriate strategies to construct arguments and proofs in both practical and abstract settings				
MEX12-5	applies techniques of integration to structured and unstructured pro	blems		
Outcome	Solutions	Marking Guidelines		
MEX12-5	(a) (i) $\int_{1}^{n} \ln x dx = \int_{1}^{n} \ln x . 1 dx$ = $[\ln x . x]_{1}^{n} - \int_{1}^{n} x . \frac{1}{x} dx$ using $\int u dv = uv - \int v du$ = $n \ln n - 0 - \int_{1}^{n} dx$	2 marks : correct solution1 mark : significant progress towards correct solution		
	$= n \ln n - [x]_1$			
MEX12-5	$= n \ln n - (n-1) = n \ln n - n + 1$ (ii) Let $f(x) = \ln x$. As the width of each column is 1 unit, Sum of the areas of the lower restangles	2 marks : correct		
	Sum of the areas of the lower rectangles $= f(2) \times 1 + f(3) \times 1 + f(4) \times 1 + \ldots + f(n-1) \times 1$ $= \ln 2 + \ln 3 + \ln 4 + \ldots + \ln(n-1)$ $= \ln 1 + \ln 2 + \ln 3 + \ldots + \ln(n-1)$ $= \ln \{1.2.3(n-1)\}$	1 mark : significant progress towards correct solution		
MEX12-2	$=\ln((n-1)!) u^2$			
	(iii) Consider the area under the curve $y = \ln x$ from x = 1 to $x = n$.	2 marks: correct solution		
	Consider the sum of the areas of the upper rectangles = $f(2) \times 1 + f(3) \times 1 + \ldots + f(n-1) \times 1 + f(n)$ = $\ln 2 + \ln 3 + \ldots + \ln n$	demonstrating clarity 1 marks: substantial progress towards solution		
MEX12-2	$= \ln \{2.3n\}$ = $\ln \{1.2.3n\}$ = $\ln (n!) u^2$ Sum of area of lower rectangles < area under the curve			
	< sum of area of upper rectangles			
	$\therefore \ln((n-1)!) < n \ln n - n + 1 < \ln(n!)$			
	Terminology used needed to be correct ~ clearly stating			
	sum of areas, for clarity of solution.			
	(iv) As $y = e^x$ is an increasing function, and since			
	$\ln((n-1)!) < n \ln n - n + 1 < \ln(n!),$			

MEX12-5	then $e^{\ln((n-1)!)} < e^{n \ln n - n + 1} < e^{\ln(n!)}$	
	$\therefore (n-1)! < e^{\ln n^n} e^{-n+1} < n!$	1 mark: correct solution
	$\therefore (n-1)! < n^n e^{n} < n!$ Needed to include justification for validity of inequality	
	raised to power of <i>e</i> as question said 'prove'.	
	(b) (i) $[-3]^{1} $	
MEX12-5	$I_n = \int_0^1 x^n \sqrt{1-x} dx = \left[-\frac{2x^n (1-x)^{\frac{3}{2}}}{3} \right]_0^1 - \int_0^1 -\frac{2(1-x)^{\frac{3}{2}} nx^{n-1} dx}{3}$	
	where $u = x^n$, $du = nx^{n-1}dx$, $dv = (1-x)^{\frac{1}{2}}$, $v = -\frac{2(1-x)^{\frac{3}{2}}}{2}$	3 marks : correct solution
	$\therefore I_n = 0 - \int_0^1 -\frac{2(1-x)^{\frac{3}{2}}nx^{n-1}dx}{3}$	2 marks: substantial progress towards correct solution
	$\therefore I_n = \frac{2n}{3} \int_0^1 (1-x)^{\frac{3}{2}} x^{n-1} dx$	1 mark : significant progress towards
	$\therefore I_n = \frac{2n}{3} \int_0^1 (1-x)(1-x)^{\frac{1}{2}} x^{n-1} dx$	correct solution
	$\therefore I_n = \frac{2n}{3} \int_0^1 \left\{ 1(1-x)^{\frac{1}{2}} x^{n-1} - x(1-x)^{\frac{1}{2}} x^{n-1} dx \right\}$	
	$\therefore I_n = \frac{2n}{3} \left\{ \int_0^1 x^{n-1} \sqrt{1-x} dx - \int_0^1 x^n \sqrt{1-x} dx \right\}$	
	$\therefore I_n = \frac{2n}{3} \{ I_{n-1} - I_n \}$	
	$\therefore SI_n = 2nI_{n-1} - 2nI_n$ $\therefore (2n+3)I_n = 2nI_n$	
	$\therefore I_n = \frac{2n}{2n+3} I_{n-1}$	
	(ii) $\int_{0}^{1} x^{3} \sqrt{1-x} dx = I_{3}$	
	$=\frac{6}{9}I_2$	2 marks : correct
	$=\frac{6}{9}\times\frac{4}{7}I_1$	1 mark · significant
	$=\frac{6}{9}\times\frac{4}{7}\times\frac{2}{5}I_0$	progress towards correct solution
	$=\frac{16}{105}\int_{0}^{1}x^{0}\sqrt{1-x}dx$	
	$=\frac{16}{105}\int_{0}^{1}(1-x)^{\frac{1}{2}}dx$	

MFX12-2	$=\frac{16}{105}\left[\frac{-2}{3}(1-x)^{\frac{3}{2}}\right]_{0}^{1}$	
IVIL/X12-2	$=\frac{16}{2}\times\frac{2}{2}$	
	105 3	
	$=\frac{32}{315}$	
	$\binom{111}{2n}$	
	$I_n = \frac{1}{2n+3}I_{n-1}$	
	$=\frac{2n}{2n}\times\frac{2(n-1)}{2n-1}I_{n-2}$	
	2n+3 $2n+1$ $2n+12n$ $2(n-1)$ $2(n-2)$	3 marks : correct
	$=\frac{2n}{2n+3} \times \frac{-(n-2)}{2n+1} \times \frac{-(n-2)}{2n-1} I_{n-3}$	solution
	$=\frac{2n}{2} \times \frac{2(n-1)}{2} \times \frac{2(n-2)}{2} \times \frac{2(n-3)}{2} \times \dots \times \frac{6}{2} \times \frac{4}{2} \times \frac{2}{2} \times \frac{2}{2}$	2 marks: substantial
	$2n+3 2n+1 2n-1 2n-3 \qquad 9 7 5 3$ $2^{n} \times n(n-1)(n-2) \times \dots \times 3 \times 2 \times 1 \times 2$	correct solution
	$=\frac{2^{2} \times n(n-1)(n-2) \times \dots \times 3 \times 2 \times 1 \times 2}{(2n+3)(2n+1)(2n-1) \times \dots \times 7 \times 5 \times 3}$	1 mark · significant
	$2^{n+1}n!$	progress towards
	$-\frac{1}{(2n+3)(2n+1)(2n-1)\times\ldots\times7\times5\times3}$	correct solution
	$\times \frac{(2n+2)(2n)(2n-2)\times\ldots\times6\times4\times2}{(2n-2)(2n-2)(2n-2)}$	
	$(2n+2)(2n)(2n-2)\times\ldots\times6\times4\times2$ $2^{n+1}\pi!$ $(2n+1)(2n)(2n-2)\times\ldots\times6\times4\times2$	
	$=\frac{2}{(2n+3)(2n+2)(2n+1)(2n-1)\times\ldots\times2(3)\times2(2)\times2(1)}{(2n+3)(2n+2)(2n+1)(2n-1)\times\ldots\times3\times2\times1}$	
	$2^{n+1}n! \times 2^{n+1}(n+1)!$	
	$= \frac{(2n+3)!}{(2n+3)!}$	
	$n!(n+1)!(2^{n+1})^2$	
	$= \frac{1}{(2n+3)!}$	
	$n!(n+1)!(2^2)^{n+1}$	
	$= \frac{(2n+3)!}{(2n+3)!}$	
	$\therefore I_n = \frac{n! (n+1)! 4^{n+1}}{4^{n+1}}$	
	(2n+3)!	
	This could also be done by Induction. Clarity of the solution was required for full marks.	
	charty of the solution was required for full marks.	